Managing fertiliser inputs on high phosphorus status soils: incorporating soil constraints into decisions

Craig Scanlan, Ross Brennan, Gavin Sarre, Bill Bowden, Daniel Hüberli, Marty Harries, Bill MacLeod and Shahajahan Miyan.
Background

- Most soils in WA exceed critical levels for soil P
 - 87% soils sampled 09/10 exceeded critical level for P
 - 63% exceeded critical level for P and were below pH 5.5 (CaCl$_2$)
 - 80% below pH 5.5 (CaCl$_2$)
 - ~ 90% adoption of minimum tillage (in some cases 20+ years)
- Yield responses to fertiliser P are occurring where soil P > critical level
- Why?
 - Phosphorus is relatively immobile in soil
 - Constraints to root exploration limit soil P availability
Effect of soil pH and rotation on soil P availability

- Aluminium (CaCl$_2$) > 5 mg/kg causes root pruning
 - Reduced access to moisture and nutrients

- Rotation history also can affect soil nutrient availability
 - Root disease
 - Herbicide carry-over

Extractable Al is toxic to root growth at greater than 5 mg/kg
Trial site history

- Trial established by Barton in 2009 at WHRS
- Lime treatments
 - Lime 2009 - 3.5 t/ha, 2012 – 1t/ha
 - No lime
- Rotation treatments
 - Continuous wheat
 - Lupin wheat (Lupin 2009 only)
- Barton plots split to apply different P rates 2012
Soil chemical analysis April 2012

Soil surface (0 – 10 cm)

<table>
<thead>
<tr>
<th>Main Treatment 2012</th>
<th>Ammonium Nitrogen</th>
<th>Nitrate Nitrogen</th>
<th>Phosphorus Colwell</th>
<th>PBI</th>
<th>Potassium Colwell</th>
<th>Sulphur</th>
<th>Organic Carbon</th>
<th>pH Level (CaCl₂)</th>
<th>Aluminium CaCl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lime / Lupin-Wheat</td>
<td>6<sup>a</sup></td>
<td>27<sup>a</sup></td>
<td>23<sup>a</sup></td>
<td>18<sup>a</sup></td>
<td>65<sup>a</sup></td>
<td>7.60<sup>a</sup></td>
<td>0.94<sup>a</sup></td>
<td>6.20<sup>b</sup></td>
<td><0.02</td>
</tr>
<tr>
<td>2. Lime / Continuous wheat</td>
<td>6<sup>a</sup></td>
<td>31<sup>a</sup></td>
<td>19<sup>a</sup></td>
<td>19<sup>a</sup></td>
<td>69<sup>a</sup></td>
<td>8.40<sup>a</sup></td>
<td>1.22<sup>a</sup></td>
<td>5.87<sup>b</sup></td>
<td><0.02</td>
</tr>
<tr>
<td>3. No lime / Lupin-Wheat</td>
<td>7<sup>a</sup></td>
<td>25<sup>a</sup></td>
<td>20<sup>a</sup></td>
<td>15<sup>a</sup></td>
<td>82<sup>a</sup></td>
<td>6.63<sup>a</sup></td>
<td>1.17<sup>a</sup></td>
<td>4.63<sup>a</sup></td>
<td>1.90</td>
</tr>
<tr>
<td>4. No lime / Continuous wheat</td>
<td>8<sup>a</sup></td>
<td>25<sup>a</sup></td>
<td>22<sup>a</sup></td>
<td>15<sup>a</sup></td>
<td>76<sup>a</sup></td>
<td>5.87<sup>a</sup></td>
<td>0.95<sup>a</sup></td>
<td>4.57<sup>a</sup></td>
<td>2.30</td>
</tr>
</tbody>
</table>

* No significant difference at any depth

Soil profile – Extractable Al (CaCl₂) [mg kg⁻¹]

<table>
<thead>
<tr>
<th>Soil depth (cm)</th>
<th>Lime Lupin-Wheat</th>
<th>Lime Continuous wheat</th>
<th>No lime Lupin-Wheat</th>
<th>No lime Continuous wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10</td>
<td>0.7</td>
<td>0.5</td>
<td>1.9</td>
<td>2.9</td>
</tr>
<tr>
<td>10 to 20</td>
<td>5.7</td>
<td>4.4</td>
<td>7.7</td>
<td>8.5</td>
</tr>
<tr>
<td>20 to 30</td>
<td>3.0</td>
<td>2.1</td>
<td>4.2</td>
<td>5.0</td>
</tr>
<tr>
<td>30 to 40</td>
<td>0.4</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

* No significant difference at any depth
P uptake at anthesis

• Soil P availability significantly higher where lime was applied (0 P)
• Rotation had no effect where lime was not applied
• For Lupin-Wheat, uptake significantly higher where 10 and 20 kg P applied

L.S.D. (p < 0.05) for all treatments: 1.73
Weed biomass at anthesis

- **Lupin-wheat**
 - Lime has less ryegrass
- **Wheat-wheat**
 - Lime has more ryegrass
- **Weed biomass decreases as shoot biomass increases**
 - Competition effect
- **Lime history has not affected herbicide efficacy**
Grain yield

Significant yield responses to fertiliser P

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Grain yield (kg ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lime/Lupin-Wheat</td>
<td>2500</td>
</tr>
<tr>
<td>2. Lime/Continuous wheat</td>
<td>2000</td>
</tr>
<tr>
<td>3. No lime/Lupin-Wheat</td>
<td>1500</td>
</tr>
<tr>
<td>4. No lime/Continuous wheat</td>
<td>1000</td>
</tr>
</tbody>
</table>

P drilled (kg ha\(^{-1}\))

- **Trend in yield potential**
 - Highest in 1. Lime / Lupin-Wheat
- **Trend in P response**
 - Greater yield response to 5 and 10P where lime has been applied

L.S.D. (p < 0.05) for all treatments: 577
Determinants of grain yield

- Grain yield had best correlation with
 - Anthesis biomass
 - P uptake
 - Heads m\(^{-2}\)
- No relationship between grains per head or grain weight
- Grain yield response to treatments occurred early in season
Stored soil moisture at maturity

- Differences ~ 10 mm though not significant
- At WUE of 10 to 20 kg grain / mm is only 100 to 200 kg grain

L.S.D. (p < 0.05) for all treatments: 22
Summary – Soil pH x P

- Lime significantly increased access to background soil P (uptake at 0 kg P ha\(^{-1}\))
- Greater crop biomass in response to lime and P treatments reduced weed biomass
- Significant GY response to fertiliser P in lime treatments only
- Trend of greater GY response to 5 and 10P in lime treatments
Effect of water repellence on soil P availability

- Soil water repellence leads to
 - Preferential flow
 - Incomplete wetting of surface layer (0 to 10 cm)
- Roots can not access nutrients in dry soil
- Actual soil P supply in WR soils may be less than supply estimated by soil testing
Water repellence and soil P - Badgingarra

<table>
<thead>
<tr>
<th>Treatment</th>
<th>MED 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nil</td>
<td>1.5</td>
</tr>
<tr>
<td>2. Banded wetter</td>
<td>1.6</td>
</tr>
<tr>
<td>3. Mouldboard plough</td>
<td>0</td>
</tr>
<tr>
<td>4. Rotary spading</td>
<td>0</td>
</tr>
</tbody>
</table>
Water repellence and soil P - Badgingarra

- **2011**
 - ~400 kg ha\(^{-1}\) GY response to 20 P in control and banded wetter
 - No response to 20 P in MP and SP

- **2012**
 - GY at 0P similar for Nil and MB
 - Response to 20P greatest in Nil
 - Higher yield potential
 - 0 and 20P treatments repeated on same plots
 - 0P: Run-down
 - 20P: Build-up
 - Sensitivity of GY response to lower rates (e.g. 5, 10 kg P) not known at this site

* Data for high N, high K treatments only
Water repellence, pH and soil P - Darkan

• Interaction between cultivation, lime and applied P on a water repellent acidic gravelly loam

• 0-10 cm
 – P 75 mg/kg
 – pH 4.4 (CaCl2)
 – MED 3

• 10-20 cm
 – pH 4.8 (CaCl2)

• 20-30 cm
 – pH 5.4 (CaCl2)
Water repellence and soil P - Darkan

- Cultivation had greater impact than lime
- No cultivation, no lime
 - 15 kg P needed to reach max yield
- Cultivation, hylime
 - 7.5 kg P needed to reach max yield

LSD (5%) 388 kg ha$^{-1}$
Root disease

• Affects soil P availability via soil exploration
 – Reduced root length

• Interactions
 – Rhizoctonia worse where
 • Cu and Mn were inadequate
 • Chlorsulfuron reduced zinc uptake

Rhizoctonia bare-patch and root damage

Photo: D. Hüberli
Root disease – current levels

- Focus paddock survey (188 paddocks)
 - Rhizoctonia most common root disease
 - All diseases most prevalent in southern region
Take-all

- Curvature co-efficient (kg grain per kg P) decreased with increasing take-all
 - Fertiliser P used less efficiently as root disease increased
 - Lower yield potential
 - Less root surface area?

Interactions between herbicides and soil P availability

- Reduced P concentration observed when chlorsulfuron applied in cv. Kulin
 - No affect in cv. Reeves
- No affect on GY for either variety

Source: Osborne et al., AJAR, 1993. 44
Key messages

• Soil P availability reduced at pH < 4.8 (CaCl₂)
• Root disease can reduce soil P availability
 – Rhizoctonia most common root disease
 – Rotation history an indicator of disease risk
• Water repellence reduces soil P availability
• Root pruning by herbicides less important
 – Impact likely to depend on other constraints
Acknowledgements

• DAFWA
 – Wongan Hills, Katanning and Geraldton RSU
 – Breanne Best
• Liebe Group
 – Clare Johnston and Angela Mazur
• GRDC
 – DAW00222 ‘More Profit from Crop Nutrition - Regional soil testing and nutrient guidelines: West’.
 – UMU00035 ‘Improving profit from fertiliser through knowledge-based tools that account for temporal and spatial soil nutrient supply’
 – DAW00213 ‘Putting the Focus on Profitable Crop and Pasture Sequencing’.
 – DAW00201 ‘Identification and characterization of disease suppressive soils in the Western Region’.
Questions?
craig.scanlan@agric.wa.gov.au