Herbicide tolerance of canola and oat varieties Harmohinder Dhammu (DPIRD)

Disclaimer

- Trials under weed free conditions
- Crop safety margin was determined
 - Higher than the label rates were used
- Good crop safety margin
- Narrow crop safety margin
 - Under less than optimal conditions, yield loss may occer even at label rate
 - Overlapping herbicide
- Don't promote any herbicide product or company
- > Always follow label recommendations

Grain yield loss at label rates

112 variety x herbicide combinations, 3 trials, 95% OK

On sandy soils at Mingenew applied IBS, 2014-15

- Napropamide + clomazone (Altiplano® at 3kg/ha) Hyola® 404RR and Pioneer® 43Y23RR (25-30%)
- S-metolachlor (Dual Gold® at 0.25L/ha) ATR Snapper TT (24%)
- Propyzamide (Edge®/Rustler® at 1L/ha) ATR Bonito TT (12%)

On sandy loam soil at Katanning, 2017

 Clopyralid (Lontrel® at 120 mL/ha) + haloxyfop (Verdict® at 100 mL/ha) at 2 leaf - ATR Mako TT (12%)

Grain yield loss at higher than label rates

On sandy soils at Mingenew applied IBS, 2014-15

- S-metolachlor (Dual Gold®) ATR Bonito TT (13%)
- Propyzamide (Edge®/Rustler®) Pioneer Sturt TT (28%)

On sandy loam soil at Katanning, 2017

- Metazachlor (Butisan®) IBS ATR Mako TT (10%)
- Butroxydim (Factor®) at 4 leaf Hyola® 404RR and Pioneer 45Y88CL (11-13%)

Clethodim at 2- and 8-leaf stage (2014)

Label says, don't apply after flower bud becomes visible

Clethodim at label rate (120g ai/ha) and at higher rate

Applied at 2 and 8 leaf stage

6 varieties (4 TT + 2 RR)

Tolerated well

Tactical Break Crop Agronomy Project (DAW00227

Clethodim timings, Yeelanna, SA 2013

Application Timing	Clethodim Rate	ATR Gem	AV Garnet	Hyola 474 CL
Untreated		1.74 t/ha	2.12 t/ha	1.75 t/ha
		grain yield % of		
		control———		
4 leaf	120g/ha	98	94	100
	240g/ha	94	94	100
8 leaf	120g/ha	95	95	95
	240g/ha	90	90	75
4 leaf and 8 leaf split	60g/ha + 60g/ha	90	96	99
	60g/ha + 60g/ha	97	92	98
Bud initiation	120g/ha	76	86	70
	240g/ha	65	87	48

SARDI

Glyphosate mixes with other herbicides

- Three trials, 2015 at Mingenew 2016 and 2017 at Katanning
- Two application of glyphosate at 621g/ha, emergence to 6 leaf stage
- Glyphosate alone at 621g/ha and in mixture with
 - Atrazine
 - Clethodim
 - Clopyralid
 - Haloxyfop
 - Terbuthylazine
 - Atrazine + terbuthylazine
- 1-2, 3-4 and 4-5 leaf on Hyola® 525RT® and at Bayer 3000TR- ALL OK

Don't use off label mixes

Glyphosate 621g + s-metolachlor 960g/ha at 3-4 leaf stage, Hyola® 525RT®

Glyphosate 621g + <u>oxyfluorfen 48g/ha</u> at 3-4 leaf stage, Hyola[®] 525RT[®]

Residual effect of cereal herbicides on canola

Mullewa

- 22 May 2014 6 wheat varieties on red loam soil, 20 herbicide treatments
- 15 April 2015 6 canola varieties sown 11 months later,
- Close to last years furrows
- Total rainfall after isoxaben application 215mm

Residual effect of terbuthylazine on canola

Label: Pre-em terbuthylazine 1050g/ha, plant back period 6 months, 175mm rainfall.

Katanning

- 16 June 2015 6 wheat varieties on sandy loam soil,
 20 herbicide treatments
- 27 May 2016 6 canola varieties sown 11.5 months later,
- Total rainfall after terbuthylazine application 435mm

Canola Key Messages

- Majority of the canola varieties showed good tolerance to registered herbicides.
- Some canola varieties showed sensitivity to napropamide + clomazone, propyzamide and s-metolachlor on sandy soils.
- Glyphosate mixes with herbicides registered on canola were tolerated well by Hyola® 525RT® and Bayer 3000TR.
- Follow plant back period of isoxaben to avoid crop damage in canola.

Oats tolerance to Trifluralin

- DPIRD and the industry identified potential use of trifluralin as IBS
- 5 trials, 2006-2008, 2015 and 2017, Katanning
 - Loamy sand to sandy loam soils
- Trifluralin at 720g 960g/ha and higher rates
- Trifluralin 960g + terbuthylazine 1050g/ha and higher rate
- Sown with superseeder and knife points and press wheels
 - 21 25cm row spacing, 4 9km/hr
- All current and new oat varieties tolerated well
- During 2017, all varieties had lower crop establishment (8 30%)
 - No effect on yield

Trifluralin permit for oats (PER84040)

- GIWA oats council secured a permit for triflurain use in oats in April 2017
 - Trifluralin up to 960g/ha (any 480 formulation up to 2L/ha)
 - knife/blade points and press wheels seeding system only
 - Do not use disc openers/planting equipment
 - Optimum seeding depth of 3 4cm
 - Avoid sites that waterlog or where furrow walls may collapse
 - Treated soil movement into furrows may cause crop damage.
 - Maintain slow to moderate seeding speed

Trifluralin X Seeding Speed in Williams

Trifluralin X Seeding Speed in Williams

Trifluralin X Seeding Speed in Williams

New oat varieties X post-em herbicides (2011-17)

Statistically significant yield loss in at least 2 trials

Chlorsulfuron (Glean® 20g/ha) at Z12-Z13

- Durack (9 -15%)
- Williams (8 20%)
- Carolup (10 23%)

Bromoxynil + MCPA ester + dicamba (Broadside® 1L/ha) and Picolinafen + bromoxynil + MCPA ester (Flight® 720mL/ha) at Z13-Z14

Williams (8 – 9% and 11 – 12%)

New oat varieties X post-em herbicides (2011-17)

Statistically significant yield loss in at least 2 trials

Diuron 500 0.5 L + MCPA amine 500 0.5L and Pyrasulfotole + MCPA ester (Precept® 2L/ha) at Z13-Z14

Bannister (11 -15% and 6 -12%)

2,4-D amine dual salt (Amicide® Advance 700 1.15L/ha) at Z15-Z16

- Durack (23 35%)
- Williams (9 10%)

Oats Key Messages

- Trifluralin up to 960g/ha was tolerated well by all the oat varieties sown with knife point and press wheel seeding system at 4 to 9km/h.
- Bannister sensitivity to diuron + MCPA amine and pyrosulfotole + MCPA ester at label rates.
- Durack sensitivity to chlorsulfuron and 2,4-D amine dual salt at label rates.
- Williams sensitivity to Broadside®, Flight®, chlorsulfuron and 2,4-D amine dual salt at label rates.

Canola Key Messages

- Majority of the canola varieties showed good tolerance to registered herbicides.
- Some canola varieties showed sensitivity to napropamide + clomazone, propyzamide and s-metolachlor on sandy soils.
- Glyphosate mixes with herbicides registered on canola were tolerated well by Hyola® 525RT® and Bayer 3000TR.
- Follow plant back period of isoxaben to avoid crop damage in canola.

Acknowledgements

- Thanks to GRDC for funding this research work (DAW00227, DAW00191 and DAW00134)
- Mark Seymour, Georgie Troup and John Moore for suggestions in this research planning
- Daniel Cox, Russell Quartermaine, Michelle Sampson, Vince Lambert, Katanning and Geraldton Research Facilities for technical assistance
- Mario D'Antuono for assistance in statistical analysis

Grains Research and Development Corporation (GRDC)

A Level 4, East Building, 4 National Circuit, Barton, ACT 2600 Australia

P PO Box 5367 Kingston, ACT 2604 Australia

T +61 2 6166 4500

F +61 2 6166 4599

www.grdc.com.au

