AGRONOMY FOR LUPIN SEED PRODUCTION

MARTIN HARRIES DPIRD
Why look at lupin seed production?

Several reports of poor establishment in recent years which may be connected with seed quality

• Jurien release 2015/16
• NVT trials 2018
• Commercial paddocks
 Many reports of high levels of split seed

Will go through these examples and look at aspects of agronomy for seed production
Jurien bulk-up
2015/16

- 40+ mm of rain on mature plants prior to harvest.

Harvested after rain

Harvested before rain

An example of rain damaged seed:
Farmers paddock 2005
‘Rain’ at harvest trials

<table>
<thead>
<tr>
<th>3 trials: 1 laboratory, 2 field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gungurru, Mandelup & Jurien</td>
</tr>
<tr>
<td>Harvest date: 31 Oct (no irrigation), 14 Nov (1 irrigation), 28 Nov (2 irrigations) and 15 Dec (3 irrigations).</td>
</tr>
<tr>
<td>No variety effect 2 of 3 trials</td>
</tr>
</tbody>
</table>
Reduction in germination (%)

Field experiment
Lab experiment

- 1 cycle = 5 to 10%
- 2 cycles = 10 to 20%
- 3 cycles = 35 to 45%

Number of wetting and drying cycles of seed
2018 NVT trials

<table>
<thead>
<tr>
<th>Poor establishment of Mandelup, Barlock, Jurien & Gunyidi</th>
</tr>
</thead>
<tbody>
<tr>
<td>These all came from a separate bulk-up to other varieties</td>
</tr>
<tr>
<td>Seed rate adjusted for germ</td>
</tr>
</tbody>
</table>

Photo Jackie Bucat
Seed used in 2018 NVT trials

- 100 mm rain at harvest
- Seed size: very small (Recommend ≥16g/100 seed)
- Germination: not great (Recommend above 90%)
- Field establishment: low
- Mn concentration: good

<table>
<thead>
<tr>
<th>Variety</th>
<th>100 seed weight (g)</th>
<th>Germination (%) Jan 18</th>
<th>Field estab (%)</th>
<th>Mn (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandelup</td>
<td>13.5</td>
<td>90</td>
<td>71</td>
<td>29</td>
</tr>
<tr>
<td>Barlock</td>
<td>11.4</td>
<td>89</td>
<td>61</td>
<td>26</td>
</tr>
<tr>
<td>Jurien</td>
<td>12.9</td>
<td>83</td>
<td>42</td>
<td>36</td>
</tr>
<tr>
<td>Gunyidi</td>
<td>12.2</td>
<td>71</td>
<td>38</td>
<td>32</td>
</tr>
</tbody>
</table>
Re-tested Gunyidi 15/2/19

Rapid seed deterioration

46% germ a year later indicates rain on seed accelerated the aging process.
Harvest timing & physical damage

Best germination = Low speed & high moisture

Same principle for handling

Same principle for air seeders

Blanchard, ED. The Effect of Mechanical Damage on the Seed (1990)

Figure 5: Germination rate versus moisture content for Danja lupins at four impact peripheral speeds.
Manganese deficiency

Split seed

Cotyledon symptoms

Poor germination + won’t emerge
Low Mn conc. = low germination %

Paddock survey

Split seed <7 ppm won’t emerge

~8-20 ppm can look ok, has variable germ % and vigour

A low % of split seed means the rest of the seed lot is probably low Mn too

- Split
- No visual symptoms
- Good

Germination (%)

Seed Mn concentration (ppm)
2018 NVT: relationship btw % split and Mn conc.

Below ~ 10 ppm split seed common

Test results from 2018 NVT

- 3 of 6 sites av Mn conc. 12.6 or lower
- Range across trials 25 ppm to 8 ppm
- Large environmental effect
Do varieties differ?

<table>
<thead>
<tr>
<th>Variety/Line</th>
<th>Mn</th>
<th>Mn rank (1-14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBA Gunyidi</td>
<td>20.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Mandelup</td>
<td>20.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Jenabillup</td>
<td>19.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Breeder line 1</td>
<td>18.5</td>
<td>5.7</td>
</tr>
<tr>
<td>PBA Jurien</td>
<td>18.1</td>
<td>6.3</td>
</tr>
<tr>
<td>Breeder line 2</td>
<td>17.0</td>
<td>7.0</td>
</tr>
<tr>
<td>PBA Leeman</td>
<td>17.3</td>
<td>7.0</td>
</tr>
<tr>
<td>Breeder line 3</td>
<td>16.9</td>
<td>7.5</td>
</tr>
<tr>
<td>Coromup</td>
<td>16.5</td>
<td>8.7</td>
</tr>
<tr>
<td>Breeder line 4</td>
<td>16.4</td>
<td>9.0</td>
</tr>
<tr>
<td>PBA Bateman</td>
<td>15.8</td>
<td>10.3</td>
</tr>
<tr>
<td>PBA Barlock</td>
<td>15.9</td>
<td>10.5</td>
</tr>
<tr>
<td>Breeder line 5</td>
<td>14.4</td>
<td>12.2</td>
</tr>
<tr>
<td>Breeder line 6</td>
<td>13.9</td>
<td>13.2</td>
</tr>
</tbody>
</table>

Test results from 2018 NVT seed

- Varieties did differ in Mn concentration at 4 sites
- Range between varieties = 6.6 ppm
- Variety less of a factor than environment
- No data here to say Jurien is a problem but should keep testing

4/6 sites sig
Environmental factors & Mn seed conc.

Zones 8, 1 and northern parts of 2 & 3 (sands), pick heavier soils for seed production.

Low rainfall = less Mn uptake

Last few season late starts… a major effect on split seed
Reduced supply?

- Fertiliser product and placement
 - A lot of paddocks sown without Mn
 - Higher P:Mn ratio compound fertilisers
 - Top-dressing ~25% as effective as deep banding
 - Are you getting enough Mn on?
- Increased lime application
- Reduced compound Mn over the rotation with reduced lupin production
- Effects of soil inversion on Mn distribution within the soil profile unknown.
Increased demand?

- Increased yields
- Soil amelioration and changes in plant yield architecture
- 2018 demo
 - Un-ripped 2% yield secondary laterals
 - Ripped 19%
Other things to consider

Crop topping
Timing
Glyphosate not registered & will reduce germination

Storage
Wild radish: lupin seed germ dropped by 20% after 5 days at 5% contamination with green radish pods

Temp and moisture: <25°C & <13% moisture

Poor establishment due to many other factors
i.e. Herbicides on ameliorated soils, fert tox, soil pathogens and other pests...?
Testing

Do the basics

• Seed size
• Inspect for damage
• Germination
• Vigour
• Manganese concentration
Summary

Growing lupin grain for seed requires some attention to detail;

• Site selection
• Nutrition
• Early harvest
• Good handling and storage
• Testing of seed

Environment and management are much bigger effects than variety
Further information

Manganese

Further information

Physical damage & storage

Blanchard E (1994) Physical damage of grain legumes during harvesting, handling and seeding and its effect on seed viability. GRDC final report, project DAW 36G

Harvest timing

Contacts

AgWest plant laboratories
Email: DDLS-STAC@agric.wa.gov.au
Phone +61 (0)8 9368 3721

Chemistry centre of WA
Mn seed testing; around $50 per sample, but minimum charge around $200.
T: +61 8 9422 9800 W: www.chemcentre.wa.gov.au
Acknowledgments

Thanks to Stephanie Boyce and DPIRD research station staff for technical assistance Belinda Eastough and Peter Bird for raising seed quality issues GRDC for financial support

Important disclaimer
The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. © State of Western Australia 2018
Harvest timing

6 varieties: Leeman, Jurien, Barlock, Gunyidi, Mandelup and Gungurru

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>No variety response</td>
<td></td>
</tr>
<tr>
<td>Delaying 2 weeks (mid Nov)</td>
<td>6% loss</td>
</tr>
<tr>
<td>Delaying 6 weeks (mid Dec)</td>
<td>15% loss</td>
</tr>
<tr>
<td>Gungurru 292 kg/ha vs Jurien 367 kg/ha</td>
<td></td>
</tr>
<tr>
<td>Higher yielding variety</td>
<td>more yield loss</td>
</tr>
</tbody>
</table>

Gungurru 292 kg/ha vs Jurien 367 kg/ha in the table shows higher yielding variety results in more yield loss when harvested at different times.