Profitable break crops for management of root lesion nematodes (RLN) and *Rhizoctonia solani* AG8

B Swift, A Butler, S Collins, C Wilkinson, S Kelly, D Huberli, V Stewart, J Lemon, P Mattingley, A Loi, M D’Antuono, A van Burgel, DPIRD; G Knell, ConsultAg
"Excuse me, sir, would you mind getting the door for us?"
Three major soil diseases of cereals in the Western Region

Rhizoctonia solani (AG8)

Root Lesion Nematodes (RLN)

Crown rot
Biology and impact of root lesion nematodes

- Microscopic translucent ‘roundworm’
- The two major WA RLN are *Pratylenchus neglectus* and *P. quasitereoides*
- Become active after rain and invade roots
- Average yield loss is 270 kg/ha for every 10 RLN/g soil

Collins et al. 2018
Root lesion nematode symptoms

Photo: DPIRD
P. neglectus response to crop rotation options – glasshouse trials 2017 (Collins et al. 2018)

Serradella is the clear winner!

- R
- S

Varieties:
- Cadiz
- Santorini
- Margurita
- Jenabillup
- Casbah
- Sothis
- Dalkeith
- Yenda
- Bartolo
- Cavalier
- Kaspa
- La trobe
- Parada
- Rasina
- Mace
- Stingray
- Popany
- Nitro Plus
- Calingiri
- Prima

Colors:
- **Serradella**
- **biserrulla**
- **lupin**
- **sub-clover**
- **bladder clover**
- **clover**
- **medic**
- **field pea**
- **barley**
- **vetch**
- **wheat**
- **clover**
Biology and impact of *Rhizoctonia solani* (AG8)

(© SARDI, PreDicta B course)

- Adapted to low-medium rainfall and non-wetting soils
- Hyphal network is sensitive to soil disturbance
- Inoculum increases most during Spring
- Yield losses can exceed 50%

(Image: Gupta Vadakattu, CSIRO)
Rhizoctonia symptoms
Katanning rotation trial (Hüberli 2011)

![Graph showing Rhizoctonia solani log(pg DNA/g soil) for different crop rotations. Pre-sow, Chemical fallow, Canola (Cobbler), Wheat (Mace) and Barley (Buloke) are compared. The graph indicates risk levels: High, Med, and Low.]
What are the management options for Rhizoctonia and nematodes?

Root lesion nematodes
- Variety choice
- Rotation with a break crop

Rhizoctonia
- In furrow and seed treatments (for cereals only)
- Soil disturbance e.g. tillage
- Rotation with canola
What if both diseases occur in the same paddock?

R. solani
High (0-50% yield loss risk)

P. neglectus
Low (0-15% yield loss risk)
What if both diseases occur in the same paddock?

- **P. quasitereoides**: High (0-50% yield loss risk)
- **P. neglectus**: Low (0-15% yield loss risk)
- **R. solani**: High (20-50% yield loss risk)
GRASS VALLEY
– *P. neglectus*, *P. quasitereoides*, *R. solani* (low levels)

2018
- Canola
- Serradella
- Subclover
- Lupin
- Chickpea
- Field pea
- Fallow

2019
- Wheat

Failed chickpea
DUMBLEYUNG

P. *neglectus* – medium levels
R. solani – medium levels

<table>
<thead>
<tr>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canola</td>
<td>Wheat</td>
</tr>
<tr>
<td>Serradella</td>
<td></td>
</tr>
<tr>
<td>Lupin</td>
<td></td>
</tr>
<tr>
<td>Faba bean</td>
<td></td>
</tr>
</tbody>
</table>
Pratylenchus neglectus in the soil at harvest (2018) - Dumbleyung

![Graph showing P. neglectus/g soil for different crops and seasons.](image-url)
Pratylenchus neglectus in the soil at harvest (2018) - Grass Valley
P. quasitereoides in the soil at harvest (2018) – Grass Valley

<table>
<thead>
<tr>
<th>Season</th>
<th>P. quasitereoides/g soil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning</td>
<td>a</td>
</tr>
<tr>
<td>Subclover</td>
<td>a</td>
</tr>
<tr>
<td>Serradella</td>
<td>a</td>
</tr>
<tr>
<td>Lupins</td>
<td>ab</td>
</tr>
<tr>
<td>Field peas</td>
<td>b</td>
</tr>
<tr>
<td>Fallow (cereal)</td>
<td>b</td>
</tr>
<tr>
<td>Fallow (pulse)</td>
<td>b</td>
</tr>
<tr>
<td>Wheat (Mace)</td>
<td>c</td>
</tr>
<tr>
<td>Canola</td>
<td>c</td>
</tr>
<tr>
<td>Wheat (Calingiri)</td>
<td>c</td>
</tr>
<tr>
<td>Barley</td>
<td>c</td>
</tr>
</tbody>
</table>

PREDICTA B RISK LEVEL
- High
- Med
- Low
Total nematodes in the soil at harvest (2018) – Grass Valley
Rhizoctonia solani AG8 in the soil at harvest (2018) - Dumbleyung

<table>
<thead>
<tr>
<th>Season Beginning</th>
<th>Serradella</th>
<th>Lupins</th>
<th>Canola</th>
<th>Faba beans</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Solani log pgDNA/g soil</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

PREDICTA B RISK LEVEL
- High
- Med
- Low
Rhizoctonia solani AG8 in the soil at harvest (2018) – Grass Valley
Harvest/Biomass Yields and Gross Margins - Dumbleyung

<table>
<thead>
<tr>
<th>Crop</th>
<th>Yield t/ha</th>
<th>Gross Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faba Bean</td>
<td>$64</td>
<td></td>
</tr>
<tr>
<td>Canola</td>
<td>$404</td>
<td></td>
</tr>
<tr>
<td>Serradella</td>
<td>$656</td>
<td></td>
</tr>
<tr>
<td>Lupin</td>
<td>$656</td>
<td></td>
</tr>
</tbody>
</table>
Harvest/Biomass yields – Grass Valley

- Canola
- Wheat (Mace)
- Field pea
- Wheat (Calingiri)
- Lupin
- Barley
- Subclover
- Serradella

Yield t/ha
Summary of crop impacts on pests/disease from Dumbleyung and Grass Valley trials in 2018

<table>
<thead>
<tr>
<th></th>
<th>Sub clover</th>
<th>Faba Bean</th>
<th>Field pea</th>
<th>Lupin</th>
<th>Serradella</th>
<th>Fallow</th>
<th>Canola</th>
<th>Mace (W)</th>
<th>Calingiri (W)</th>
<th>Barley</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. neglectus</td>
<td>😞</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>P. quasitereoides</td>
<td>😊</td>
<td>N/A</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>R. solani</td>
<td>😊</td>
<td>😟</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
</tr>
</tbody>
</table>

- 😞 Increases RLN or *R. solani*
- 😟 Slight increase in RLN or *R. solani*
- 😊 Decrease in RLN or no change to slight increase in *R. solani*

Weed control is important to manage *R. solani*
KEY MESSAGES

• Canola isn’t a break crop in a multi-peril paddock
• Legumes reduced root lesion nematode numbers
• Legumes didn’t increase *Rhizoctonia solani* levels as much as cereals
• Cereals increase the levels of root lesion nematodes and *Rhizoctonia solani*
ACKNOWLEDGEMENTS

• Project: DAW00256 “Building regional crop protection and production agronomy R&D capacity in regional Western Australia

• GRDC
• DPIRD
• CSBP
Thank you
Visit dpird.wa.gov.au

Important disclaimer
The Chief Executive Officer of the Department of Primary Industries and Regional Development and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it.

© State of Western Australia 2018