New ascobchyta blight resistant chickpea varieties offer profitable legume options to growers

Kadambot Siddique¹, Tanveer Khan¹, Alan Meldrum² and Katia Stafenova¹

¹UWA Institute of Agriculture, The University of Western Australia
²Pulse Australia

Key Messages
1. New ascobchyta blight resistance varieties Ambar, Neelam and PBA Striker are higher yielding than the older varieties. All have adequate resistance but Ambar and Neelam have a higher degree of resistance than PBA Striker.
2. Weed management during the chickpea phase has appeared to be a major concern of growers. A concerted effort needs to be made to extend best practices to minimise the impact that weeds may have.
3. New chickpea varieties offer profitable legume options for fine textured soils in WA

Aims
- To demonstrate the viability of new ascobchyta blight resistant chickpea varieties for profitable grain production and to promote the industry
- To receive feedback from growers during field days and field walks through direct interaction

Methods
1. Ten demonstration trials in 2013 and 2014 involving new varieties were conducted in collaboration with various grower groups. These involved un-replicated plots sown, harvested and managed with broad acre farm machinery following district practices. Field days and field walks were held at nine of these trials.
2. Two replicated trials of the prevalent variety, new varieties and four advanced lines currently under commercial consideration were conducted at Mingenew and Merredin in six replications. Spatial row-column design with replication in two directions (along rows and columns) was applied and generated using DiGGer (Coombes, 2002). Linear mixed model has been formulated using a randomization-model based approach typically used for multi-environment trials (METs). The model used for the analysis of each trial includes blocking terms to account for the randomization process and additional terms to model the extra sources of variation, such as spatial trends and extraneous variation (Stefanova et al., 2009). In the MET analysis an unstructured model was used for the variance - covariance structure of the genotype by environment (G x E) interaction effect. The analyses have been conducted using ASReml-R (Butler et al., 2009)
3. A survey was conducted through distributing over 150 questionnaire forms to growers and agri-business personnel.

Results

Demonstration trials (Demos): While the 2013 season showed average growth in majority of the demo trials, the 2014 season had generally low rainfall and consequently depressed growth and yields. Field days and field walks were attended at all sites and over 270 growers and agri-industry people were directly addressed and shown the new ascobchyta blight resistant varieties. Considerable feedback was received through interaction during these field events. The yield estimates from those demo trials are shown in Table 1. In general, new varieties Ambar, Neelam and PBA Striker were higher yielding than the older variety Genesis836.

Table 1: Yields (t/ha) in demo trials.

- Doodlakine trial (2013) was abandoned due to resistant ryegrass infestation.
- Mullewa trial (2014) was not harvested due to drought, and yields too low at around 100 kg/ha for reliable comparison
Table 1: Yields (t/ha) of variety and crossbreds under commercial consideration in replicated trials at Mingenew and Merredin.

<table>
<thead>
<tr>
<th>Year</th>
<th>Co-operator</th>
<th>Mingenew Yield (t/ha)</th>
<th>% Genesis836</th>
<th>Rank</th>
<th>Merredin Yield (t/ha)</th>
<th>% Genesis836</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Mingenew Irwin Group</td>
<td>1.614</td>
<td>103</td>
<td>5</td>
<td>0.434</td>
<td>66</td>
<td>8</td>
</tr>
<tr>
<td>2013</td>
<td>DAFWA Research Station, Merredin</td>
<td>1.059</td>
<td>111</td>
<td>2</td>
<td>0.625</td>
<td>96</td>
<td>6</td>
</tr>
<tr>
<td>2013</td>
<td>Corrigin Farm Improvement Group</td>
<td>1.108</td>
<td>92</td>
<td>8</td>
<td>0.668</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td>2013</td>
<td>Liebe Group, Dalwallinu</td>
<td>0.725</td>
<td>117</td>
<td>1</td>
<td>0.604</td>
<td>92</td>
<td>7</td>
</tr>
<tr>
<td>2013</td>
<td>Mullewa Farm Improvement Group</td>
<td>0.223</td>
<td>108</td>
<td>3</td>
<td>0.687</td>
<td>105</td>
<td>2</td>
</tr>
<tr>
<td>2014</td>
<td>Mingenew Irwin Group</td>
<td>0.890</td>
<td>104</td>
<td>4</td>
<td>0.722</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>2014</td>
<td>Corrigin Farm Improvement Group</td>
<td>0.337</td>
<td>101</td>
<td>6</td>
<td>0.658</td>
<td>101</td>
<td>4</td>
</tr>
<tr>
<td>2014</td>
<td>Liebe Group, East Buntine</td>
<td>0.380</td>
<td>100</td>
<td>7</td>
<td>0.654</td>
<td>100</td>
<td>5</td>
</tr>
</tbody>
</table>

*Neelam yields in 2013 are underestimates as due to damaged seed, emergence was poor with an estimated 20% lower plant population.

Replicated variety trials in 2014: Due to very low rainfall at the critical flowering and podding stage both trials had low yields. Merredin’s lower yield than the Mingenew trial may be a manifestation of the comparatively lower spring temperatures that prevail at Merredin. While all new varieties yielded more than Genesis836, Ambar was particularly consistent over the two sites. Neelam’s lower yield than Ambar and PBA Striker in this low rainfall season may be due to its later flowering habit. Interestingly, crossbreds under commercial consideration showed marked interaction with sites. Ranking of WACPE2199 and WACPE2234, in particular, showed sharp decline in the low yielding environment of Merredin.

Table 2: Yields (t/ha) of varieties and crossbreds under commercial consideration in replicated trials at Mingenew and Merredin.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Mingenew Yield (t/ha)</th>
<th>% Genesis836</th>
<th>Rank</th>
<th>Merredin Yield (t/ha)</th>
<th>% Genesis836</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>WACPE2196</td>
<td>0.746</td>
<td>103</td>
<td>5</td>
<td>0.434</td>
<td>66</td>
<td>8</td>
</tr>
<tr>
<td>WACPE2199</td>
<td>0.805</td>
<td>111</td>
<td>2</td>
<td>0.625</td>
<td>96</td>
<td>6</td>
</tr>
<tr>
<td>WACPE2201</td>
<td>0.668</td>
<td>92</td>
<td>8</td>
<td>0.668</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td>WACPE2234</td>
<td>0.844</td>
<td>117</td>
<td>1</td>
<td>0.604</td>
<td>92</td>
<td>7</td>
</tr>
<tr>
<td>Ambar</td>
<td>0.782</td>
<td>108</td>
<td>3</td>
<td>0.687</td>
<td>105</td>
<td>2</td>
</tr>
<tr>
<td>Neelam</td>
<td>0.728</td>
<td>101</td>
<td>6</td>
<td>0.658</td>
<td>101</td>
<td>4</td>
</tr>
<tr>
<td>PBA Striker</td>
<td>0.753</td>
<td>104</td>
<td>4</td>
<td>0.722</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>Genesis836</td>
<td>0.724</td>
<td>100</td>
<td>7</td>
<td>0.654</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Mean</td>
<td>0.756</td>
<td></td>
<td></td>
<td>0.631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard error</td>
<td>0.041</td>
<td></td>
<td></td>
<td>0.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV%</td>
<td>9.512</td>
<td></td>
<td></td>
<td>12.919</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<</td>
<td>0.01</td>
<td></td>
<td></td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chickpea industry survey: Only 10% potential respondents returned the questionnaire reflecting the current lack of interest in chickpea. The key points emerging from the survey are as follows:

1. The current interest in chickpea is low due to recent dry seasons and also a lack of targeted extension effort.
2. Not all growers know that ascochyta blight resistant varieties are now available and there is limited knowledge about the merits of newly released varieties.
3. The two most important issues to be targeted for enhancing the chickpea industry are effective weed management and timely marketing information. Profitability can be improved by extension of robust agronomic practices and timely information on price and marketing.

Conclusion

The chickpea industry, which in late 1990s rose rapidly from almost no chickpea to over 70,000 ha in a short time, was halted due to the devastating epidemics of ascochyta blight disease for which there was no genetic resistance in...
varieties at the time. Although, the problem has been addressed and resistant varieties have become available in recent years, there has not been any marked resurgence in the area sown to chickpea in Western Australia.

This project aimed to demonstrate the new resistant varieties and in doing so, get first hand feedback from growers in order to re-kindle interest in chickpea. During the two years, almost all major field events in the potential chickpea growing regions and some other regions have been exploited through demo trials and other trials to spread the message first hand to hundreds of growers and agro-industry personnel. Both demo trials and replicated trials clearly showed that the new ascochyta resistant chickpea varieties perform better than the older variety and disease risk is now minimal. Valuable first hand feedback and survey results have provided information on the growers concerns and if targeted efforts are made to address these issues, there is every possibility that the chickpea industry will expand in WA.

Key words

Chickpea, *Cicer arietinum*, variety, yield, ascochyta blight, resistance

Acknowledgement

This project was financially supported by the Council of Grain Growers Organisations (COGGO). Cooperation from Grower Groups, Pulse Australia and the Department of Agriculture and Food (DAFWA) is gratefully acknowledged.

Paper reviewed by

Dr Jonathan Clements, DAFWA

References

